Publications

[1] Maximilian Wirth and Andreas Schöbel. Mindestzugfolgezeiten bei ETCS Level 2 und Level 3 auf der Wiener S-Bahn-Stammstrecke. Signal + Draht, 20:21--26, 2020.
bib ]
[2] Martin Sommer, Dimitriy Chelobanov, Gregor Theeg, Sergej Vlasenko, and Andreas Schoebel. Train protection. In Gregor Theeg and Sergej Vlasenko, editors, Railway Signalling and Interlocking, chapter 8, pages 247--319. PMC Media House GmbH, Leverkusen, 2020.
bib ]
[3] Andreas Schoebel and Jelena Arndt. Hazard alert systems. In Gregor Theeg and Sergej Vlasenko, editors, Railway Signalling and Interlocking, chapter 14, pages 469--495. PMC Media House GmbH, Leverkusen, 2020.
bib ]
[4] Andreas Schöbel, Christian Schöbel, Johann Blieberger, and Mark Stefan. Benchmark of delays simulated by OpenTrack and calculated by Kronecker Algebra. In Science and Traffic Development (ZIRP 2019), Opatija, CRO, May 2019.
bib ]
[5] Andreas Schöbel. S2r-project “gosaferail” wp 2-mobility, 2019. Railway Days, Bukarest.
bib ]
[6] Andreas Schöbel, Christian Schöbel, Mark Stefan, and Johann Blieberger. Kronecker algebra for optimization of rail traffic flow on zagreb-rijeka line. In Railcon 2018, pages 41--44, Niš, Serbia, October 2018.
bib ]
[7] Andreas Schöbel, Christian Schöbel, Mark Stefan, and Johann Blieberger. Enhancing performance in railway operation by application of kronecker algebra. In ICTTE 2018, pages 113--117, Beograd, Serbia, September 2018.
bib ]
[8] Andreas Schöbel, Johann Blieberger, and Christian Schöbel. Application of kronecker algebra for railway line zagreb-rijeka. In CETRA 2018, pages 1261--1264, Zadar, Croatia, May 2018.
bib ]
[9] Andreas Schöbel and Christian Schöbel. Data Converter from OpenTrack into Kronecker. In Science and Traffic Development (ZIRP 2018), Opatija, CRO, May 2018.
bib ]
[10] Andreas Schöbel, Christian Schöbel, and Johann Bllieberger. Kronecker Algebra for Managing Rail Capacity. In ISEP2018 -- 26th International Symposium on Electronics in Transport, Ljubljana, SI, March 2018.
bib ]
[11] Andreas Schöbel, Jelena Aksentijevic, and Drazen Vinscak. Simulacija zeljeznicke mreze uz pomoc kroneckerove algebre za optimizaciju protoka prometa. Željeznice 21, 17(1):7--11, 2018.
bib ]
[12] Andreas Schöbel, Jelena Aksentijevic, and Daniel Hürlimann. Simulation of Actual Network Performance Using Kronecker Algebra for Optimization of Traffic Flow. In VI International Symposium New Horizons of Transport and Communications, pages 1--10, Doboj, November 2017.
bib ]
[13] Mark Stefan, Johann Blieberger, and Andreas Schöbel. Application of Kronecker Algebra in Railway Operation. Tehnicki vjesnik -- Technical Gazette (TV-TG), 24(1):21--30, February 2017.
bib | DOI ]
[14] Andreas Schöbel, Jelena Aksentijevic, Mark Stefan, and Johann Blieberger. Optimization of rail traffic flow using Kronecker algebra during maintenance on infrastructure. Transportation Research Procedia, 27:545--552, 2017.
bib | DOI ]
[15] Jelena Aksentijevic and Andreas Schöbel. Optimisation of rail traffic flow during maintenance on infrastructure. In Proceedings of ICTTE 2016, International Conference on Traffic and Transport Engineering, Belgrade, Serbia, November 2016.
bib ]
[16] Andreas Schöbel and Jelena Aksentijevic. Rail traffic flow optimisation by kronecker algebra for irish rail. In Proceedings of Railcon '16, XVII Scientific Expert Conference on Railways, Nis, Serbia, October 2016.
bib ]
[17] Andreas Schöbel. Anwendungsmöglichkeiten der Kronecker Algebra im Eisenbahnbetrieb, 2016. Braunschweiger Verkehrskolloquium.
bib ]
[18] Mark Stefan, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra zur Optimierung des Eisenbahnbetriebes. ETR, 9:78--84, 2015.
bib ]
[19] Igor Grujicic, Günther Raidl, and Andreas Schöbel. Variable neighborhood search for integrated timetable based design of railway infrastructure. Electronic Notes in Discrete Mathematics, 47(0):141 -- 148, 2015. The 3rd International Conference on Variable Neighborhood Search (VNS'14).
bib | DOI | http ]
[20] Andreas Schöbel, Mark Volcic, and Johann Blieberger. Analysis and optimisation of railway systems. In EURO-ZEL 2014, Zilina, Slovak Republic, May 2014.
bib ]
[21] Igor Grujicic, Günther Raidl, Andreas Schöbel, and Gerhard Besau. A metaheuristic approach for integrated timetable based design of railway infrastructure. In CETRA 2014, pages 691--696, April 2014.
bib ]
[22] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Optimisation of railway operation by application of kronecker algebra. In CETRA 2014, pages 37--42, Split, Croatia, April 2014.
bib ]
[23] Johann Blieberger, Andreas Schöbel, and Mark Volcic. Kronecker-Algebra und ihre breit gefächerten Anwendungen im Eisenbahnbereich. Signal + Draht, 7+8:15--18, 2014.
bib ]
[24] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra based modelling of railway operation. In MT-ITS 2013, pages 345--356, Dresden, Germany, December 2013.
bib ]
[25] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra as a frame for optimisation of railway operation. In 21st International Scientific Conference -- TRANSPORT 2013; Mechanics Transport Communications, volume 11/3, pages 57--63, Sofia, Bulgaria, October 2013.
bib ]
[26] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra and its broad applications in railway systems. In EURO-ZEL 2013: Recent Challenges for European Railways, pages 275--282, Zilina, Slovak Republic, June 2013.
bib ]
[27] Andreas Schöbel, Günther Raidl, Igor Grujicic, Gerhard Besau, and Gottfried Schuster. An optimization model for integrated timetable based design of railway infrastructure. In Proceedings, May 2013. Vortrag: 5th International Seminar on Railway Operations Modelling and Analysis, Copenhagen.
bib ]
[28] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra based Travel Time Analysis for Railway Systems. In FORMS/FORMAT 2012 -- 9th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems, pages 273--281, Braunschweig, Germany, December 2012.
bib ]
[29] Robert Mittermayr, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra based Deadlock Analysis for Railway Systems. PROMET-TRAFFIC & TRANSPORTATION, pages 359--369, 2012.
bib ]
[30] Andreas Schöbel and Johann Blieberger. Availability analysis for railway infrastructure based on graph theory. In EURO-ZEL 2010: Revitalisation of Economy - New Challenge for European Railways, pages 141--148, Zilina, Slovak Republic, May 2010.
bib ]
[31] Johann Blieberger, Norbert Ostermann, and Andreas Schöbel. Graphentheoretische Verfügbarkeitsanalyse für die Eisenbahninfrastruktur. Signal + Draht, 9:33--36, 2009.
bib ]

This file was generated by bibtex2html 1.99.